References

1. Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America 102, 15144–8 (2005).

2. Adams, H. D. et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America 106, 7063–6 (2009).

3. Williams, A. P. et al. Causes and implications of extreme atmospheric moisture demand during the record-breaking 2011 wildfire season in the southwestern United States. Journal of Applied Meteorology and Climatology 53, 2671–2684 (2014).

4. Woodhouse, C. A. & Overpeck, J. T. 2000 Years of Drought Variability in the Central United States. Bulletin of the American Meteorological Society 79, 2693–2714 (1998).

5. Prein, A. F., Holland, G. J., Rasmussen, R. M., Clark, M. P. & Tye, M. R. Running dry: The U.S. Southwest’s drift into a drier climate state. Geophysical Research Letters 43, 1272–1279 (2016).

6. IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).

7. Vose, R. S., Easterling, D. R., Kunkel, K. E., LeGrande, A. N. & Wehner, M. F. Temperature changes in the United States. in Climate science special report: Fourth national climate assessment, volume i (eds. Wuebbles, D. J. et al.) 185–206 (U.S. Global Change Research Program, 2017). doi:10.7930/J0N29V45

8. Weiss, J. L., Castro, C. L. & Overpeck, J. T. Distinguishing Pronounced Droughts in the Southwestern United States: Seasonality and Effects of Warmer Temperatures. Journal of Climate 22, 5918–5932 (2009).

9. Breshears, D. D. et al. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Frontiers in plant science 4, 266 (2013).

10. Pederson, G. T. et al. The Unusual Nature of Recent Snowpack Declines in the North American Cordillera. Science 333, 332–336 (2011).

11. Klos, P. Z., Link, T. E. & Abatzoglou, J. T. Extent of the rain-snow transition zone in the western U.S. under historic and projected climate. Geophysical Research Letters 41, 4560–4568 (2014).

12. Zeng, X., Broxton, P. & Dawson, N. Snowpack Change From 1982 to 2016 Over Conterminous United States. Geophysical Research Letters 2018GL079621 (2018). doi:10.1029/2018GL079621

13. Alfaro-Sánchez, R. et al. Climatic and volcanic forcing of tropical belt northern boundary over the past 800 years. Nature Geoscience 11, (2018).

14. Touchan, R., Woodhouse, C. A., Meko, D. M. & Allen, C. D. Millennial precipitation reconstruction for the Jemez Mountains, New Mexico, reveals changing drought signal. International Journal of Climatology 31, 896–906 (2011).

15. Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change 3, 292–297 (2013).

16. Griffin, D. & Anchukaitis, K. J. How unusual is the 2012-2014 California drought? Geophysical Research Letters n/a–n/a (2014). doi:10.1002/2014GL062433

17. Belmecheri, S., Babst, F., Wahl, E. R., Stahle, D. W. & Trouet, V. Multi-century evaluation of Sierra Nevada snowpack. Nature Climate Change 6, 2–3 (2016).

18. Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson, G. T. & Meko, D. M. Assessing the risk of persistent drought using climate model simulations and paleoclimate data. Journal of Climate (2014). doi:10.1175/JCLI-D-12-00282.1

19. Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Science Advances 1, 1–7 (2015).

20. Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, art129 (2015).

21. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259, 660–684 (2010).

22. van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science (New York, N.Y.) 323, 521–524 (2009).

23. Raffa, K. F. et al. Cross-scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle Eruptions. BioScience 58, 501 (2008).

24. Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313, 940–943 (2006).

25. Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984-2011. Geophysical Research Letters 41, 2928–2933 (2014).

26. Singleton, M., Thode, A., Sanchez Meador, A. & Iniguez, P. Increasing trends in high-severity fire in the southwestern USA from 1984-2015. Forest Ecology and Management 433, 709–719 (2019).

27. Williams, A. P. et al. Forest responses to increasing aridity and warmth in the southwestern United States. Proceedings of the National Academy of Sciences of the United States of America 107, 21289–94 (2010).

28. Savage, M. & Mast, J. N. How resilient are southwestern ponderosa pine forests after crown fires? Canadian Journal of Forest Research 977, 967–977 (2005).

29. Guiterman, C. H., Margolis, E. Q., Allen, C. D., Falk, D. A. & Swetnam, T. W. Long-Term Persistence and Fire Resilience of Oak Shrubfields in Dry Conifer Forests of Northern New Mexico. Ecosystems 21, 943–959 (2018).

30. van Mantgem, P. J., Falk, D. A., Williams, E. C., Das, A. J. & Stephenson, N. L. Pre-fire drought and competition mediate post-fire conifer mortality in western U.S. National Parks. Ecological Applications 28, 1730–1739 (2018).

31. Klesse, S. et al. Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nature Communications 9, 5336 (2018).

32. Ferguson, D. et al. Drought preparedness for tribes in the four corners region. Report from April 2010 workshop. (Climate Assessment for the Southwest, 2011).

33. Cozzetto, K. et al. Climate change impacts on the water resources of American Indians and Alaska Natives in the U.S. Climatic Change 120, 569–584 (2013).

34. Lynn, K. et al. The impacts of climate change on tribal traditional foods. Climatic Change 120, 545–556 (2013).

35. Voggesser, G., Lynn, K., Daigle, J., Lake, F. K. & Ranco, D. Cultural impacts to tribes from climate change influences on forests. Climatic Change 615–626 (2013). doi:10.1007/s10584-013-0733-4

36. Agee, J. K. Fire Ecology of Pacific Northwest Forests. (Island Press, 1993).

37. Whitlock, C., Higuera, P. E., Mcwethy, D. B. & Briles, C. E. Paleoecological Perspectives on Fire Ecology: Revisiting the Fire-Regime Concept. Holocene 6–23 (2010).

38. Swetnam, T. W. et al. Multi-Scale Perspectives of Fire, Climate and Humans in Western North America and the Jemez Mountains, U.S.A. Philosophical Transactions of the Royal Society B 371, 20150168 (2016).

39. Allen, C. D. et al. Ecological restoration of southwestern ponderosa pine ecosystems: a broad perspective. Ecological Applications 12, 1418–1433 (2002).

40. Dieterich, J. & Swetnam, T. Dendrochronology of a fire scarred ponderosa pine. Forest Science 30, 238–247 (1984).

41. Baisan, C. & Swetnam, T. Fire history on a desert mountain range: Rincon Mountain Wilderness, Arizona, USA. Canadian Journal of Forest Research 20, 1559–1569 (1990).

42. Whitehair, L., Fulé, P. Z., Meador, A. S., Azpeleta Tarancón, A. & Kim, Y.-S. Fire regime on a cultural landscape: Navajo Nation. Ecology and Evolution 1–11 (2018). doi:10.1002/ece3.4470

43. Savage, M. & Swetnam, T. Early 19th-century fire decline following sheep pasturing in a Navajo ponderosa pine forest. Ecology 71, 2374–2378 (1990).

44. Guiterman, C. H. Climate and human drivers of forest vulnerability in the US Southwest: Perspectives from dendroecology. 185 (University of Arizona, 2016).

45. Covington, W. W. & Moore, M. M. Southwestern ponderosa pine forest structure: Changes since Euro-American settlement. Journal of Forestry 92, 39–47 (1994).

46. Belsky, A. J. & Blumenthal, D. M. Effects of Livestock Grazing on Stand Dynamics and Soils in Upland Forests of the Interior West. Conservation Biology 11, 315–327 (1997).

47. Weisiger, M. The origins of Navajo pastoralism. Journal of the Southwest 46, 253–282 (2004).

48. Jett, S. Navajo seasonal migration patterns. The Kiva 44, 65–75 (1978).

49. Bailey, G. & Bailey, R. G. A history of the Navajos: The reservation years. (School of American Research Press, 1986).

50. Weisiger, M. Dreaming of sheep in Navajo country. (University of Washington Press, 2009).

51. The Archaeology of Navajo Origins. (University of Utah Press, 1996).

52. Towner, R. H. The Navajo depopulation of Dinetah. Journal of Anthropological Research 64, 511–527 (2008).

53. Taylor, A. H., Trouet, V., Skinner, C. N. & Stephens, S. Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE. Proceedings of the National Academy of Sciences 113, 13684–13689 (2016).

54. Cook, E. R. & Krusic, P. J. The North American Drought Atlas. (2004).

55. St. George, S., Meko, D. M. & Cook, E. R. The seasonality of precipitation signals embedded within the North American Drought Atlas. The Holocene 20, 983–988 (2010).

56. Swetnam, T. W. & Betancourt, J. L. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. Journal of Climate 11, 3128–3147 (1998).

57. Margolis, E. Q., Woodhouse, C. A. & Swetnam, T. W. Drought, multi-seasonal climate, and wildfire in northern New Mexico. Climatic Change 142, 433–446 (2017).

58. Parks, S. A. et al. High-severity fire: Evaluating its key drivers and mapping its probability across western US forests. Environmental Research Letters 13, (2018).

59. Falk, D. Are Madrean ecosystems approaching tipping points? Anticipating interactions of landscape disturbance and climate change. in Merging science and management in a rapidly changing world: Biodiversity and management of the madrean archipelago iii; 2012 may 1-5; tucson, az. proceedings. rmrs-p-67. fort collins, co (eds. Gottfried, G., Ffolliott, P., Gebow, B., Eskew, L. & Collins, L.) 40–47 (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station., 2013).

60. Swetnam, T. W. & Brown, P. M. Climatic inferences from dendroecological reconstructions. in Dendroclimatology: Progress and prospectives. developments in paleoenvironmental research (eds. Hughes, M. K., Diaz, H. F. & Swetnam, T. W.) 263–295 (Springer Verlag, 2011). doi:10.1007/978-1-4020-5725-0

61. Pearson, G. Natural reproduction of western yellow pine in the Southwest. (1923).

62. Savage, M., Brown, P. & Feddema, J. The role of climate in a pine forest regeneration pulse in the southwestern United States. Ecoscience 3, 310–318 (1996).

63. White, A. Presettlement regeneration patterns in a southwestern ponderosa pine stand. Ecology 66, 589–594 (1985).

64. Brown, P. M. & Wu, R. Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine landscape. Ecology 86, 3030–3038 (2005).

65. Meunier, J., Brown, P. & Romme, W. Tree recruitment in relation to climate and fire in northern Mexico. Ecology 95, 197–209 (2014).

66. Speer, J. H. Fundamentals of tree-ring research. 333 (The University of Arizona Press, 2010).

67. Applequist, M. A simple pith locator for use with off-center increment cores. Journal of Forestry 51, 141 (1958).

68. Margolis, E. Q. Fire regime shift linked to increased tree density in a pinon-juniper landscape. International Journal of Wildland Fire 23, 234–245 (2014).

69. Margolis, E. Q. & Malevich, S. B. Historical dominance of low-severity fire in dry and wet mixed-conifer forest habitats of the endangered terrestrial Jemez Mountains salamander (Plethodon neomexicanus). Forest Ecology and Management 375, 12–26 (2016).

70. Brown, P. M. & Cook, B. Early settlement forest structure in Black Hills ponderosa pine forests. Forest Ecology and Management 223, 284–290 (2006).

71. Margolis, E. Q., Swetnam, T. W. & Allen, C. D. A stand-replacing fire history in upper montane forests of the southern Rocky Mountains. Canadian Journal of Forest Research 37, 2227–2241 (2007).

72. Tepley, A. J. & Veblen, T. T. Spatiotemporal fire dynamics in mixed-conifer and aspen forests in the San Juan Mountains of southwestern Colorado, USA. Ecological Monographs 85, 583–603 (2015).

73. Frey, S. J. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Science Advances 2, (2016).

74. Davis, K. T., Dobrowski, S. Z., Holden, Z. A., Higuera, P. E. & Abatzoglou, J. T. Microclimatic buffering in forests of the future: the role of local water balance. Ecography (2018). doi:10.1111/ecog.03836

75. Restaino, C. M., Peterson, D. L. & Littell, J. Increased water deficit decreases Douglas fir growth throughout western US forests. Proceedings of the National Academy of Sciences 113, 9557–9562 (2016).

76. Charney, N. D. et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecology Letters 19, 1119–1128 (2016).

77. Ogle, K., Whitham, T. G. & Cobb, N. S. Tree-ring variation in pinyon predicts likelihood of death following severe drought. Ecology 81, 3237–3243 (2000).

78. Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change (2012). doi:10.1038/nclimate1635

79. St. George, S. An overview of tree-ring width records across the Northern Hemisphere. Quaternary Science Reviews 95, 132–150 (2014).

80. Fritts, H. C., Smith, D. G., Cardis, J. W. & Budelsky, C. A. Tree-ring characteristics along a vegetation gradient in northern Arizona. Ecology 46, 393–401 (1965).

81. Macalady, A. K. & Bugmann, H. Growth-mortality relationships in pinon pine (Pinus edulis) during severe droughts of the past century: Shifting processes in space and time. PLoS ONE 9, (2014).

82. McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nature Climate Change 6, 295–300 (2016).

83. Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nature Plants 1, 15139 (2015).

84. McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change 2–5 (2015). doi:10.1038/nclimate2641

85. Lindenmayer, D. B., Laurance, W. F. & Franklin, J. F. Global decline in large old trees. Science 338, 1305–1306 (2012).

86. Lewis, S. L. et al. Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. Journal of Ecology 92, 929–944 (2004).

87. Breshears, D. D. et al. Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Frontiers in Ecology and the Environment 7, 185–189 (2009).

88. Allen, C. D. & Breshears, D. D. Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proceedings of the National Academy of Sciences 95, 14839–42 (1998).

89. Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences of the United States of America 105, 11823–6 (2008).